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Abstract

Boneh and Durfee have developed a cryptanalytic algorithm on low private key RSA. The algorithm is based on lattice basis reduc-
tion and breaks RSA with private key d < N 0:292. Later on, an improved version by Blömer and May enhanced the efficiency, while reach-
ing approximately this same upper bound. Unfortunately, in both the algorithms, there is a critical error in theoretical analysis, leading
to the overestimated upper bound N 0:292. In this paper we present a more precise analytical model, with which the theoretical upper
bound on d is modified to approximately d < N 0:277 for ordinary RSA systems with a 1024-bit public key ðN ; eÞ.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

The RSA public key cryptosystem [1] has been applied
in many fields since its first introduction, and research on
cryptanalysis of RSA is still in progress. Recently, a special
case of RSA with low private key d has been studied.
Wiener and Dujella have developed a cryptanalytic algo-
rithm [2,3] using continued fraction and broke RSA with
a private key d < N 0:25. Boneh and Durfee proposed in
Ref. [4] that this bound could be increased to d < N 0:292

by applying the LLL [5] lattice basis reduction algorithm
on a specifically constructed lattice. Later Blömer and
May [6] improved the efficiency of the algorithm by reduc-
ing the dimension of the lattice used in the reduction pro-
cedure. Meanwhile, a similar bound d < N 0:290 is achieved
in this modified version. In addition, Ernst et al. proposed
partial key exposure attacks on low private RSA [7], in
which techniques similar to Boneh–Durfee’s algorithm
were used.

In Boneh and Durfee’s algorithm (as well as in Blömer
and May’s improved version) given public exponent e of
RSA and carefully selected parameters m and t, the follow-
ing inequality

detðLÞ < emðw�1Þ=c ð1Þ

holds. Here, detðLÞ is the determinant of the lattice L

involved in the algorithm, and w is the dimension of this
lattice, satisfying

w � ð1� dÞm2 þ oðm2Þ ð2Þ

c is a constant only depending on the dimension w:

c ¼ ðw2wÞðw�1Þ=2 ð3Þ

Boneh and Durfee took c as a small factor compared with
emw in the inequality, and ignored it when analyzing the
upper bound on the private exponent d; hence, leading to
the result d < N 0:292. We argue that this result should be
reconsidered, if we take into account the effect due to this
‘‘small” constant c. As a matter of fact, their algorithm
achieves the upper bound N 0:292 by taking sufficiently large
m and w, and in this case, c may be approximating or even
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larger than emw. On the other hand, for smaller m and w,
the lower order components oðm2Þ should be considered.
All these factors lead to a modification on the bounds.

Hinek et al. have noticed this same problem [8] and gave a

modified upper bound on d by taking c ¼ ðw2wÞðw�1Þ=2. For

example, d < N 0:271 with 1000-bit N, using Blömer and
May’s lattice. Hinek’s results could still be improved. By
applying the newest research results [9,10], for almost all
lattices with sufficiently high dimension w, c is modified to

c � ðw1:02wÞðw�1Þ=2 ð4Þ

so we can build a more precise analytical model for the upper
bound on d. Evaluation results show that d < N 0:292 can be
achieved only with a sufficiently large (e.g., 100,000-bit) pub-
lic key ðN ; eÞ. For common RSA systems with a 1024-bit
public key, the theoretical upper bound on d is modified to
approximately d < N 0:277; and for a 10,240-bits public key,
the bound is modified to approximately d < N 0:288.

2. Boneh–Durfee’s algorithm

2.1. The main procedure

We only give the main procedure of Boneh and Durfee’s
algorithm here. The readers may find a detailed description
in Ref. [4].

Recall that an RSA public key is a pair of integers ðN ; eÞ
where N ¼ pq is the product of two n-bit primes. The cor-
responding private key is an integer d satisfying
ed � 1modð/ðNÞ=2Þ, where /ðNÞ ¼ N � p � qþ 1 is the
Euler function. It follows that there exists an integer x such
that

ed þ x
N þ 1

2
� p þ q

2

� �

¼ 1 ð5Þ

Writing y ¼ � pþq
2

and A ¼ Nþ1
2

, we have

xðAþ yÞ � 1mod e ð6Þ

Denote e ¼ N a and d ¼ N d. Typically, e is the same order
of magnitude as N and so a � 1. Thereby, we can compute
jxj < 3e1þðd�1Þ=a � ed and jyj < 2e1=ð2aÞ � e0:5. Denote

f ðx; yÞ ¼ xðAþ yÞ � 1 ð7Þ

The algorithm is trying to find out ðx0; y0Þ as a root of
f ðx; yÞ ¼ 0, such that jx0j < ed and jy0j < e0:5. Given the
parameter pair ðm; tÞ, and define the following
polynomials:

gi;k :¼ xif kðx; yÞem�k

hj;k :¼ yjf kðx; yÞem�k
ð8Þ

where k ¼ 0; . . . ;m; for each k we use gi;kðx; yÞ for
i ¼ 0; . . . ;m� k and use hj;kðx; yÞ for j ¼ 1; . . . ; t. Here,
the gi;kðx; yÞ polynomials are referred to as x-shifts and
hj;kðx; yÞ polynomials as y-shifts. Observe that ðx0; y0Þ is
the root of all these polynomials modulo em for
k ¼ 0; � � � ;m. The authors construct a lattice L on the

matrix spanned by the corresponding coefficient vectors
of the polynomials, and apply the LLL lattice basis reduc-
tion algorithm to find two linearly independent bivariate
polynomials g1; g2 2 Z½x; y�, satisfying

g1ðx0; y0Þ ¼ 0

g2ðx0; y0Þ ¼ 0
ð9Þ

By computing the resultant hðyÞ ¼ Resðg1; g2Þ and solving
hðyÞ ¼ 0, one root of hðyÞ will expose y0 ¼ �ðp þ qÞ=2
and facilitate the factorization of N ¼ pq.

Remark. The bivariate polynomials g1; g2 are not guaran-
teed to be algebraically independent though they are proven
to be linearly independent. In this case, the resultant is
identically zero, so that Boneh–Durfess’s algorithm fails.

2.2. Bounds analysis

For the lattice L used in the reduction procedure, given
selected parameters ðm; tÞ, we can compute its dimension

w ¼ ðmþ 1Þðmþ 2Þ
2

þ tðmþ 1Þ ð10Þ

The determinant of the lattice is denoted by detðLÞ, which
comprises two parts, corresponding to the x-shifts and
y-shifts, respectively, i.e.,

detðLÞ ¼ detx � dety ð11Þ
where

detx ¼ emðmþ1Þðmþ2Þð5þ4dÞ=12 ð12Þ
and

dety ¼ etmðmþ1Þð1þdÞ=2þtðmþ1Þðmþtþ1Þ=4 ð13Þ
To produce the bivariate polynomials g1 and g2 by the LLL
algorithm, we have to satisfy the following inequalities

detðLÞ < emðw�1Þ=c ð14Þ
where

c ¼ ðw2wÞðw�1Þ=2 ð15Þ
Boneh and Durfee considered that c is a constant only
depending on the dimension w and negligible when com-
pared with emðw�1Þ. When m is large enough (hence oðm2Þ
is negligible), the inequality above turns out to be

m2ð�1þ 4dÞ � 3tmð1� 2dÞ þ 3t2 < 0 ð16Þ
For every m the left-hand side is minimized at
t ¼ mð1� 2dÞ=2. Plug in this value and simplify the
inequality, we have

m2ð�7þ 28d� 12d2Þ < 0 ð17Þ
which implies

d <
7

6
� 1

3

ffiffiffi

7
p
� 0:284 ð18Þ
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For m being large enough, whenever d < N 0:284, we can
break RSA by factoring the modulus N, using the algo-
rithm in Section 2.1. Note that the LLL lattice reduction
algorithm ends in polynomial time, Boneh–Durfee’s algo-
rithm is also of polynomial-time complexity.

2.3. Improving the bounds

Boneh and Durfee improved the upper bound on d by
eliminating some ‘‘damaging” rows in the matrix spanned
by the coefficients vectors, and constructed a new lattice
L1. The readers may find detailed analysis in Ref. [4].

In the improved algorithm, we take parameter pair ðm; tÞ
satisfying t ¼ ½ð1� 2dÞm�, where ½x� denotes the integer
closest to x. The dimension of the new lattice L1 is

w ¼ ð1� dÞm2 þ oðm2Þ ð19Þ
and its determinant is bounded by

detðL1Þ 6 e
5
6�

d
3�

d2

3

� �

m3þoðm3Þ ð20Þ
Again we consider the inequality

detðL1Þ < emðw�1Þ=c ð21Þ
where c ¼ ðw2wÞðw�1Þ=2. Ignore the ‘‘small” constant c and
take large enough m (hence oðm3Þ is negligible), we must have

e
5
6�

d
3�

d2

3

� �

m3þoðm3Þ < emðw�1Þ=c ð22Þ
which can be simplified to

m3 � 1

6
þ 2d

3
� d2

3

� �

< 0 ð23Þ

implying 2d2 � 4dþ 1 > 0. Hence, for all

d < 1�
ffiffiffi

2
p

2
� 0:292 ð24Þ

The RSA cryptosystem is vulnerable to attacks by lattice
reduction.

Remark. Boneh–Durfee’s result d < N 0:292 is a best theo-
retical bound on private key d now. Besides, Blömer and
May proposed an improved algorithm [6], which enhances
the efficiency by reducing the dimension of the lattice used;
meanwhile, reaching a close upper bound d < N 0:290.

3. Problem with Boneh–Durfee’s algorithm

Both of the algorithms above achieve the upper bounds
on d by taking large enough m, and ignoring the ‘‘small”
constant c. We find that these two conditions are actually
conflicting. To show more clearly, denote BðnÞ ¼ log2n,
where BðnÞ is a real number close to the number of bits
for integer n. We have the following Theorem.

Theorem 1. For an RSA cryptosystem with public key ðN ; eÞ
and small private key d ¼ N d, if we choose large enough

m > 2BðeÞ=ð1� dÞ in Boneh–Durfee’s algorithm, then

c ¼ ðw2wÞw=2 is larger than emw, where w � ð1� dÞm2 is the

dimension of the lattice used in the basis reduction procedure.

Proof. For simplicity, we carry out the proof with ‘‘Bit”
operation BðxÞ as defined above. Obviously,

BðemwÞ � Bðem�ð1�dÞm2Þ � ð1� dÞm3BðeÞ ð25Þ
And on the other hand, we have

BðcÞ ¼ Bððw2wÞw=2Þ � w
2
� ðBðwÞ þ wÞ

� ð1� dÞm2

2
� ð2BðmÞ þ ð1� dÞm2Þ

>
ð1� dÞ2m4

2
ð26Þ

If we take a large m > 2BðeÞ=ð1� dÞ, then

BðcÞ> ð1�dÞ2m4

2
¼ð1�dÞm3BðeÞ �mð1�dÞ

2BðeÞ >BðemwÞ ð27Þ

Thus, we must have c > emw, since c has more bits than
emw. h

Theorem 1 indicates that, if we choose a large parameter
m as required, the ‘‘small” constant c ¼ ðw2wÞw=2 is actually
larger than emw; thus, it is not negligible. On the other hand,
if we take a smaller m, then the lower order parts oðm3Þ
cannot be ignored. This leads to a modification on the
upper bound on d in Boneh–Durfee’s algorithm.

More particularly, we find that Boneh–Durfee’s algo-
rithm succeeds to break RSA with d < 0:292 only with suf-
ficiently large N and e (say, 100,000 bits), such that c and
oðm3Þ are both negligible. While for practical applications,
considering cryptanalysis of RSA with BðNÞ � 1024 is
more significant. In the next sections, we are to build a
more precise analytic model for Boneh–Durfee’s algorithm
and modify the upper bounds on d in RSA systems with
ordinary public key ðN ; eÞ.

4. Modified analytic model

For more precise analysis of the upper bound on d, we
take into account both of the effects due to c and the lower
order components in polynomials of m and t. According to
Boneh–Durfee’s algorithm, take t ¼ ½ð1� 2dÞm�, then the
dimension of the lattice L1 used is

w � �mðmþ 1Þdþ m2 ð28Þ
To compute the determinant of L1, divide the lattice into
two parts D and M 0

y corresponding to the x-shifts and
y-shifts, respectively (see details in Section 5 in Ref. [4]).
The determinant for the D component is 2

detðDÞ ¼ e
mðmþ1Þðmþ2Þ

3 dþ5mðmþ1Þðmþ2Þ
12 ð29Þ

and that for M 0
y is

detðM 0
yÞ � e�

mðmþ1Þð2mþ1Þ
6 d2�mðmþ1Þð8mþ1Þ

12 dþmðmþ1Þð5mþ1Þ
12 ð30Þ

Then the determinant of the whole lattice L1 is defined by

detðL1Þ ¼ detðDÞ � detðM 0
yÞ: ð31Þ

Use the denotation BðnÞ as in Section 3, we can compute
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BðdetðL1ÞÞ ¼ BðdetðDÞÞ þ BðdetðM 0
yÞÞ

� BðeÞ �mðmþ 1Þð2mþ 1Þ
6

d2

�

� mðmþ 1Þð4m� 7Þ
12

dþ mðmþ 1Þð10mþ 11Þ
12

�

ð32Þ

On the other hand, we have

BðemwÞ � BðeÞf�m2ðmþ 1Þdþ m3g ð33Þ
and

BðcÞ � ð1� dÞm2

2
� ð2BðmÞ þ ð1� dÞm2Þ

¼ m4

2
d2 � ðm4 þ m2BðmÞÞdþ m4

2
þ m2BðmÞ ð34Þ

To satisfy the inequality detðL1Þ < emw=c so as to apply the
cryptanalytic algorithm, we must have

BðdetðL1ÞÞ � BðemwÞ þ BðcÞ < 0 ð35Þ
Plugging in all the values in Eqs. (31)–(33) implies that

ad2 þ bdþ c < 0 ð36Þ
where a; b; c are variables depending on BðeÞ and m:

a ¼ �mðmþ 1Þð2mþ 1Þ
6

BðeÞ þ m4

2

b ¼ �mðmþ 1Þð4m� 7Þ
12

BðeÞ þ m2ðmþ 1ÞBðeÞ

� ðm4 þ m2BðmÞÞ

c ¼ mðmþ 1Þð10mþ 11Þ
12

BðeÞ � m3BðeÞ þ m4

2
þ m2BðmÞ

ð37Þ
Now we get a modified theoretical upper bound on d

d <
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb2 � 4acÞ
q

�2a
; where a < 0 ð38Þ

Remark. In inequality (36), cases with a P 0 are actually not
satisfying. For simplicity, ignore the small constants and
lower order parts, and we can simplify a, b and c to a �
� 1

3 BðeÞ þ m4

2 ; b � 2
3 BðeÞ � m4 ¼ �2a and c � � 1

6 BðeÞþ m4

2 .

When a ¼0, we have b � 0 and c > 0, so the left part in (36) is
larger than 0. Furthermore, when a > 0, we have c > a and

b2 � 4ac < 0; hence, there is no d satisfying inequality (36).

5. More precise analysis

The above result is achieved by taking c ¼ ðw2wÞðw�1Þ=2,
similar to Hinek’s analysis [8]. We will show in Section 6
that in this case the theoretic bound is actually far from
experimental results. For a more precise analysis, we intro-
duce the following heuristic by Ngyuen, Stehlé and Gama
[9,10]:

Heuristic 1. Given as input a random basis of almost any
lattice L of sufficiently high dimension d, the LLL
algorithm (and its improved version L2 in [11]) outputs a
basis whose first vector b1 satisfies

kb1k � 1:02d detðLÞ1=d ð39Þ
The heuristic is supported by lots of experimental results,
though not proved as theorem. Thereby, c should be re-
placed by

c � ðw1:02wÞðw�1Þ=2 ð40Þ
Accordingly, the coefficients a, b and c in inequality (38)
are also modified:

a � �mðmþ 1Þð2mþ 1Þ
6

BðeÞ þ m4

2
log21:02

b � �mðmþ 1Þð4m� 7Þ
12

BðeÞ þ m2ðmþ 1ÞBðeÞ

� ðm4log21:02þ m2BðmÞÞ

c � mðmþ 1Þð10mþ 11Þ
12

BðeÞ � m3BðeÞ

þ m4

2
log21:02þ m2BðmÞ

ð41Þ

Remark. In Ref. [10], the authors give a more tight bound
kb1k � 1:01d detðLÞ1=d , using the BKZ lattice reduction
algorithm, also based on the mass of experimental results.
This may still cause a small modification on d. However,
the BKZ algorithm is a blockwise generalization of LLL
with potentially super-exponential complexity, and its per-
formance may not satisfy with relatively large m and
dimension w in Boneh–Durfee’s algorithm.

6. Evaluation for the bounds on d

According to the analysis above, we compare the theo-
retic bounds on d, in the following different cases:

(a) Boneh and Durfee’s original analysis, ignoring the
‘‘small” constant c.

(b) Our modification, taking c ¼ ðw2wÞðw�1Þ=2.
(c) Our modification, taking c � ðw1:02wÞðw�1Þ=2.

In Figs. 1 and 2 we show the bounds on d with BðeÞ ¼ 1024
and BðeÞ ¼ 10;240, respectively. In both figures, d for case (a)
is approximating 0.293 with m!1, just as Boneh and Dur-
fee have claimed. For case (b), the theoretic bounds are actu-
ally far from experimental results; especially, when N and e

are small; it is due to the fact that the LLL algorithm only
gives a ‘‘supremum” for the norm of b1, but not a tight
bound. We care much more for case (c), the theoretic bound
on d is approximately 0.277 when BðeÞ ¼ 1024, and approx-
imately 0.288 when BðeÞ ¼ 10;240.

Fig. 3 shows the upper bounds on d in case (c), with differ-
ent public key lengths. Notice that d! 0:292 when e!1.
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Actually, the ideal result d < N 0:292 by Boneh and Durfee
could be achieved with a 100,000-bit public key ðN ; eÞ.

7. Conclusions

We conclude with the following facts for Boneh and
Durfee’s algorithm:

(1) The theoretic upper bound on d is much tighter than
Boneh and Durfee have claimed; especially, when the
public key ðN ; eÞ are small.

(2) For RSA cryptosystems with a 1024-bit public key
ðN ; eÞ, the theoretic upper bound on d is approxi-
mately 0.277.

(3) Boneh and Durfee’s result, i.e. d < 0:292, can be
achieved only in an ideal case with very large N and e.

Practical applications of the Boneh–Durfee algorithm
may behave little better than the modified theoretical
bounds in this paper, up to approximately d < 0:280 in
experimental results. The difference is due to that we use
Heuristic 1 in evaluation, which is based on the experi-
ments. Actually, predicting and proving the precise output
quality of lattice reduction algorithms is still an open prob-
lem to be solved.
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